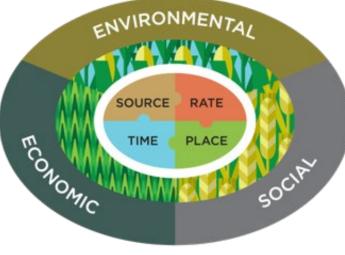
Integrating Enhanced Efficiency Fertilizers into 4R practices

Leanna Nigon, PhD

Director of Agronomy & Research

My Background


Agenda

- 4R Nutrient Stewardship & EEFs
- N Cycle & Loss Pathways
- EEFs & modes of action
- EEFs in the Research
- EEFs & the 4Rs

4Rs

Improve agricultural production while contributing to social well being and minimizing environmental impacts (benefits water and air quality)

RIGHT SOURCE Matches fertilizer type to crop needs. **Right Source:** Ensure a balanced supply of essential nutrients, considering both naturally available sources and the characteristics of specific products, in plant available forms.

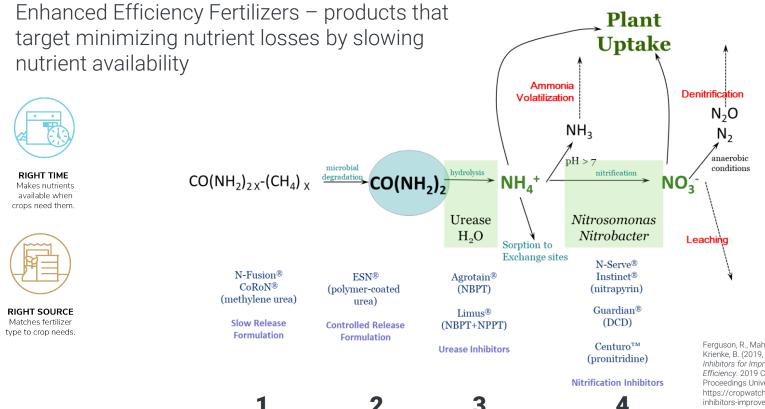
RIGHT RATE Matches amount of fertilizer to crop needs. **Right Rate:** Assess and make decisions based on soil nutrient supply and plant demand.

RIGHT TIME Makes nutrients available when crops need them. **Right Time:** Assess and make decisions based on the dynamics of crop uptake, soil supply, nutrient loss risks, and field operation logistics.

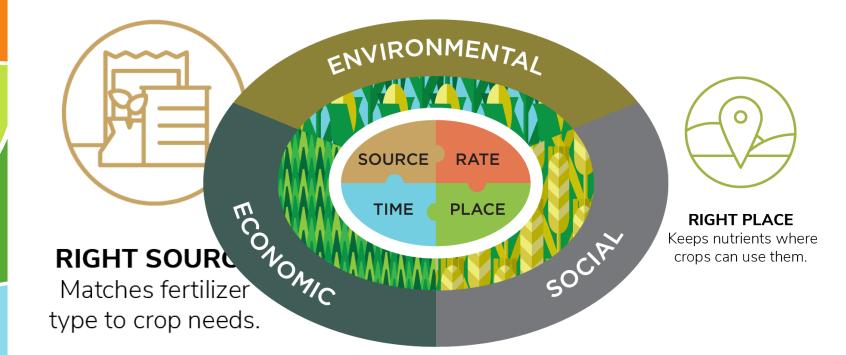
RIGHT PLACE Keeps nutrients where crops can use them. **Right Place:** Address root-soil dynamics and nutrient movement and manage spatial variability within the field to meet site-specific crop needs and limit potential losses from the field.

RIGHT SOURCE Matches fertilizer type to crop needs.

RIGHT RATE Matches amount of fertilizer to crop needs.

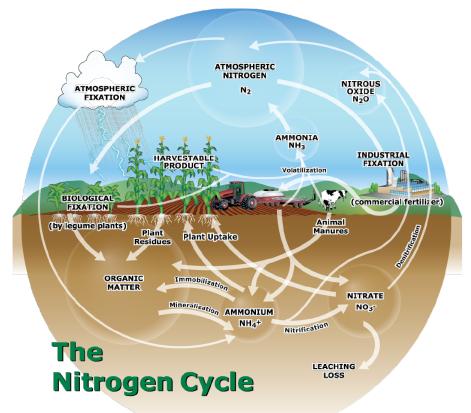


RIGHT TIME Makes nutrients available when crops need them.

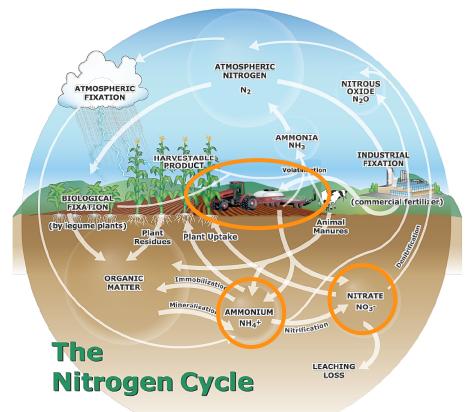


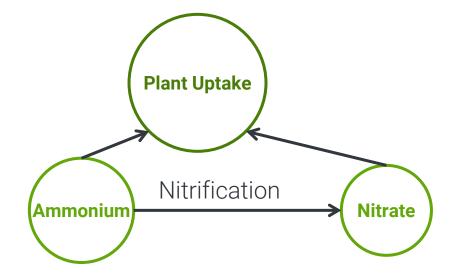
RIGHT PLACE Keeps nutrients where crops can use them.

EEFs

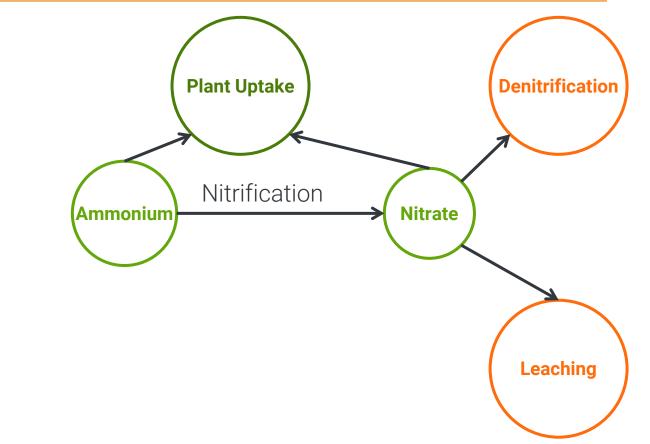


Ferguson, R., Maharjan, B., Wortmann, C., & Krienke, B. (2019, January 14). Nitrogen Inhibitors for Improved Fertilizer Use Efficiency. 2019 Crop Production Clinic Proceedings University of Nebraska Lincoln. https://cropwatch.unl.edu/2019/nitrogeninhibitors-improved-fertilizer-use-efficiency

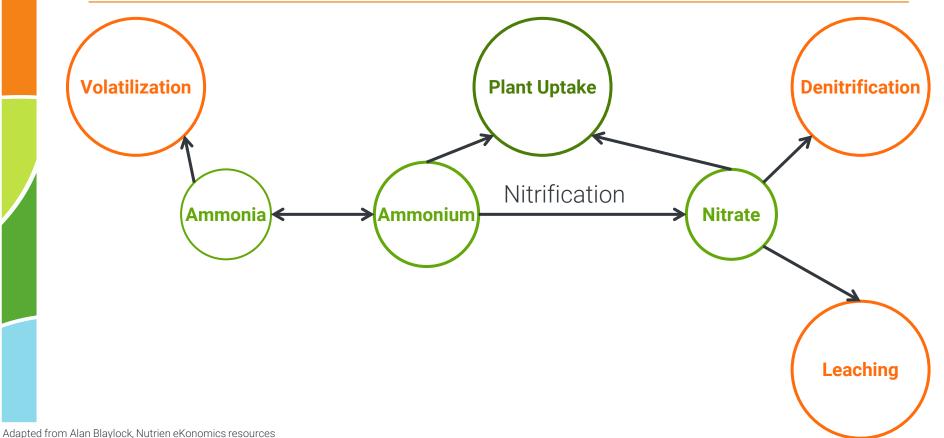


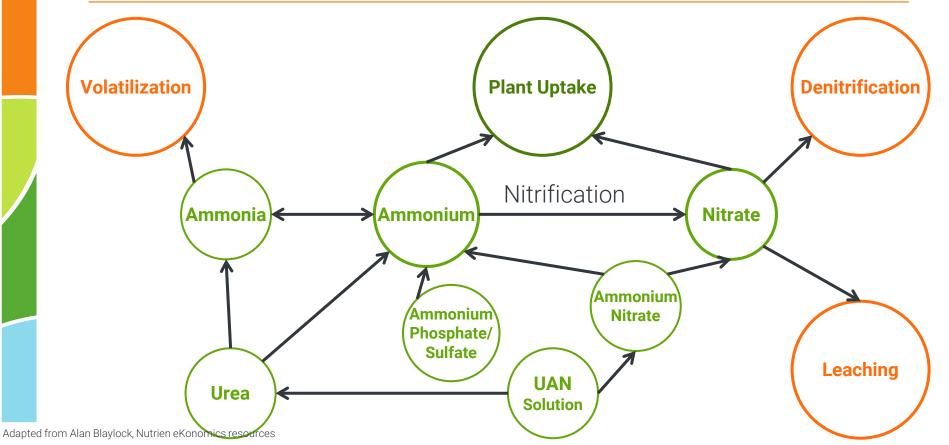

N Cycle & Loss Pathways

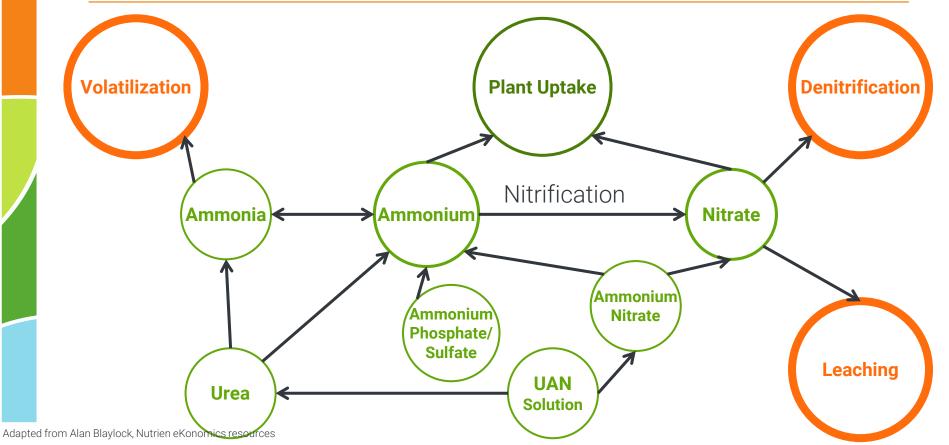
Understanding the N Cycle



Understanding the N Cycle






Adapted from Alan Blaylock, Nutrien eKonomics resources

Adapted from Alan Blaylock, Nutrien eKonomics resources

Major Loss Pathways in Ag

Ammonia/Urea

Volatilization of NH3 (ammonia) to the atmosphere

Nitrate

Leaching of NO3 (nitrate) to water sources

Nitrate

Denitrification of NO3 to N gas forms

Loss possible within days of application

Loss possible anytime within the season

Major Loss Pathways in Ag

Ammonia/Urea

Volatilization of NH3 (ammonia) to the atmosphere

Nitrate

Leaching of NO3 (nitrate) to water sources

Nitrate

Denitrification of NO3 to N gas forms

Loss possible within days of application

Loss possible anytime within the season

Volatilization

Volatilization is driven by:

- Incorporation depth
 - Too shallow
- Soil moisture conditions
- Weather (if incorporation method)

Volatilization: Anhydrous Ammonia

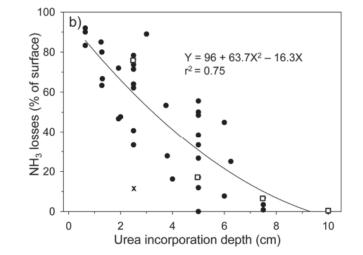
$\text{NH3} + \text{H2O} \rightarrow \text{NH4} + \text{OH}$

Can be lost is not at the right depth or soil moisture

High pH can increase volatilization

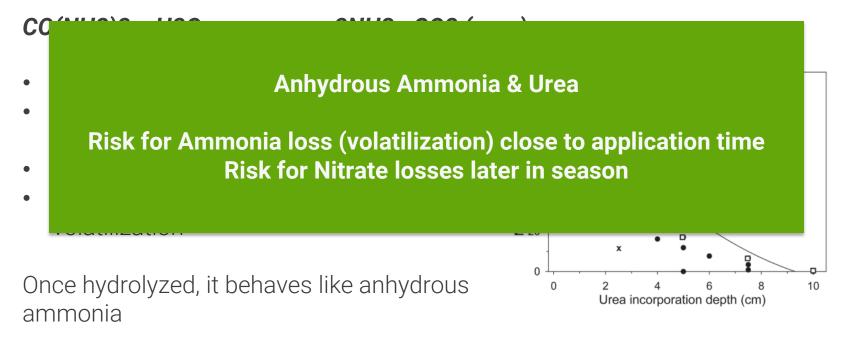
Ammonia will eventually convert to Nitrate

Volatilization: Urea


Urea converts to Ammonium and then Nitrate

 $CO(NH2)2 + H2O + urease \rightarrow 2NH3 + CO2$ (urea)

- Process is driven by soil moisture
- Urea will hydrolyze (covert to NH3 + CO2) in 2-4 days
- Must incorporate or apply before rainfall
- High pH & temperature increases volatilization


Once hydrolyzed, it behaves like anhydrous ammonia

Fertilizer Fates: Urea

Urea converts to Ammonium and then Nitrate

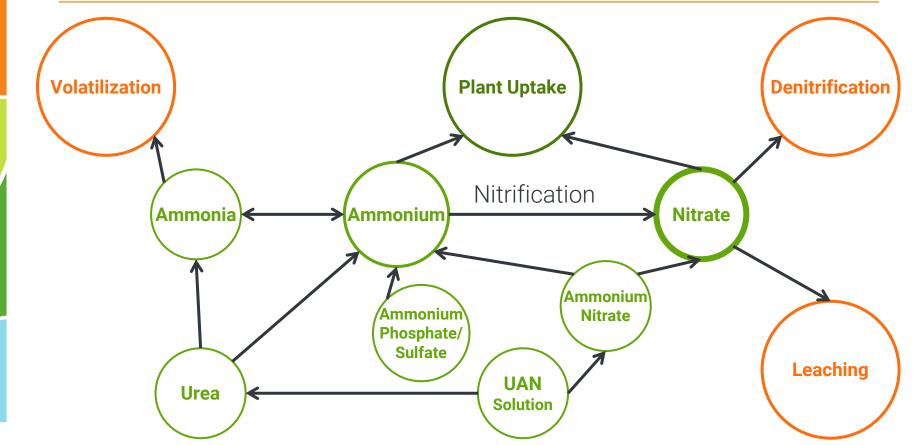
Rochette, P., Angers, D. A., Chantigny, M. H., Gasser, M.-O., MacDonald, J. D., Pelster, D. E., & Bertrand, N. (2013). Ammonia Volatilization and Nitrogen Retention: How Deep to Incorporate Urea? *Journal of Environmental Quality*, 42(6), 1635–1642.

Major Loss Pathways in Ag

Ammonia/Urea

Volatilization of NH3 (ammonia) to the atmosphere

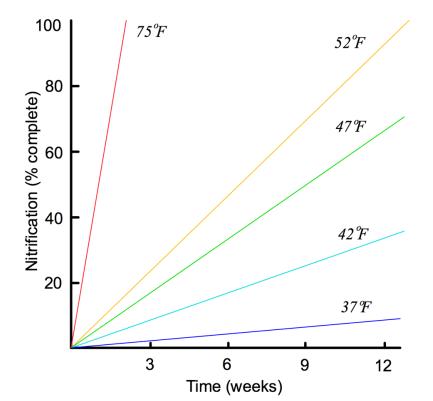
Nitrate


Leaching of NO3 (nitrate) to water sources

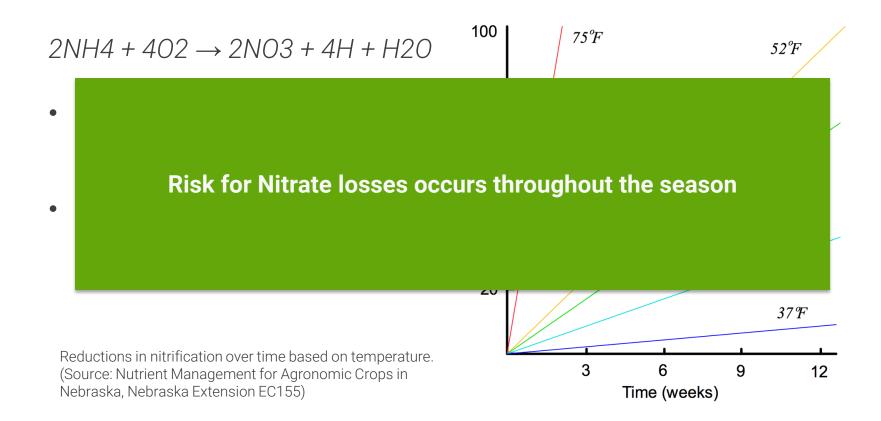
Nitrate

Denitrification of NO3 to N gas forms

Loss possible within days of application


Loss possible anytime within the season

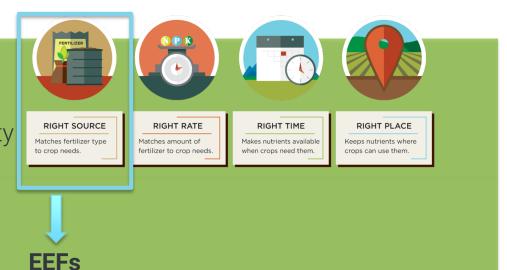
Nitrification to Nitrate


 $\textbf{2NH4} + \textbf{402} \rightarrow \textbf{2NO3} + \textbf{4H} + \textbf{H2O}$

- Most ammonium nitrifies in a few weeks
- Microbial Process driven by soil water and temperature

Reductions in nitrification over time based on temperature. (Source: Nutrient Management for Agronomic Crops in Nebraska, Nebraska Extension EC155)

Nitrification to Nitrate


Fertilizer Loss Potential

Ammonia Nitrate & Ammonia Nitrate

Anhydrous Ammonia Ammonium Nitrate Urea UAN Ammonium S/P

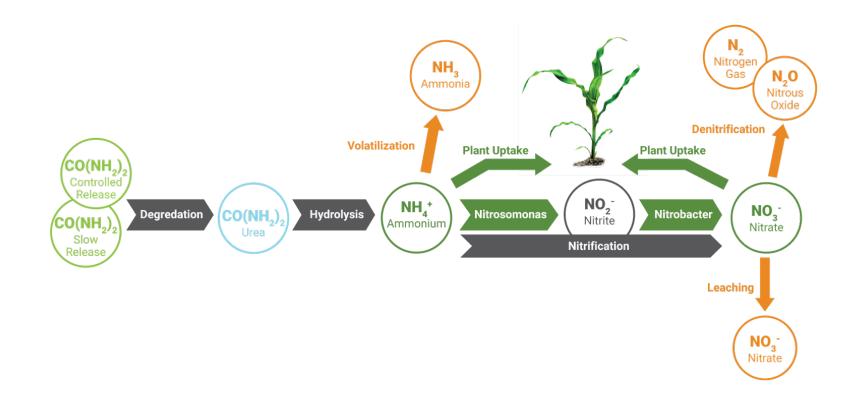
Tools for Reducing N losses

4Rs1. Minimize loss2. Increase nutrient availability

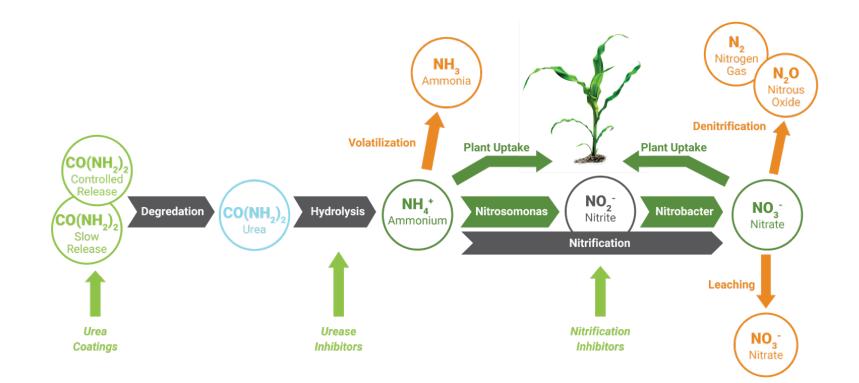
Slow or Controlled release
 Inhibitors
 N available at the right time

EEFs & Modes of Action

EEFs


Enhanced Efficiency Fertilizers - What are they?

- Target minimizing nutrient losses by slowing nutrient availability.
- Slow the release of nutrients for uptake or the conversion of nutrients to other forms that may be susceptible to losses
- Commonly designed for nitrogen (N), though there are some EEFs for phosphorus (P)
- **Two main categories**: inhibitors/stabilizers & slow/controlled release fertilizers.


EEFs in short

Fertilizer that has been modified in some way to
1. Reduce N Loss
2. Increase Nutrient Availability to the crop

Understanding EEFs & N Cycle

Understanding EEFs & N Cycle

Types of EEFs

Slow and controlled release coatings

- Coatings on the fertilizer that slow the delivery of nitrogen.
- Release time is determined by the mechanism of release.
 - Can use physical processes or biochemical processes
 - Same objective, but different release mechanism

Inhibitors/Stabilizers

- Additives that slow N transformations in the soil.
- Urease inhibitor: slows conversion of urea to NH4
 - slows the process of hydrolysis
- Nitrification inhibitor: slows conversion of NH4 to NO3
 - Temporarily suppresses
 microbes

Types of EEFs

Slow and controlled release coatings

• Coatings on the fertilizer that slow

Inhibitors/Stabilizers

IS.

Additives that slow N

Many products Different modes of action Various benefits

Need to select the product based on the challenge you are trying to solve

microbes

Slow and Controlled Release Fertilizers

Fertilizers that release N over a period of time (few weeks to months)

Slow-Release Fertilizers	Controlled-Release Fertilizers		
Release controlled by either microbial or chemically decomposable compound	Release is controlled by a "physical coating" applied to the fertilizer		
 Release pattern & rate not easily predicted/controlled May be affected by moisture, temperature, and microbial activity 	 Coated fertilizers have a more predictable release time based on temperature 		

Slow and Controlled Release Fertilizers

Two mechanisms for N release

Chemical/Biological Pro	ocess		Physical Process	
Typically water soluble, combinations of methylated urea		Typically coated (controlled release) fertilizers		
Methylene ureaUrea formaldehydeUrea triazon	Sul Coa Ur Pol	ited ea	Coated UreasESNPolyonPurKote	

Slow and Controlled Release Fertilizers

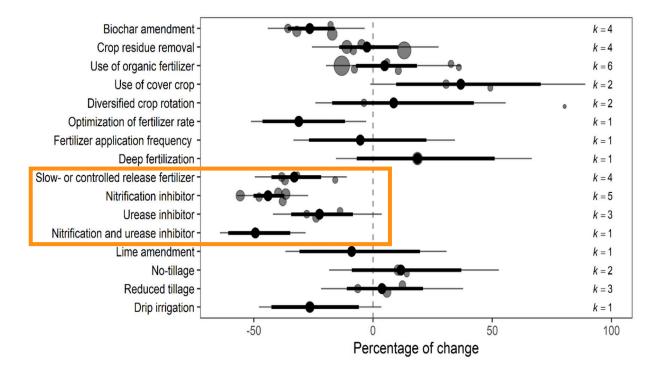
Two mechanisms for N release

Chemical/Biological Process		Physical Process	
	Typically water soluble, combinations of methylated urea	Typically coated (controlled release)	

Different mechanisms, Same objective: Slow N availability

Inhibitors & Stabilizers

Urease Inhibitors			Nitrification Inhibitors
Slows urea to NH4 conversion		Slows NH4 to NO3 conversion	
Controls volatilization for roughly 7-14 days		Controls denitrification and leaching for roughly 4-8 weeks	
NBPT Agrotain, Nitrain, Limus	UI & Sup Tribi	erU	Nitrapyrin N-serve, Instinct
Duramide Anvol			DCD Guardian Pronitrodine


Longevity of EEFs

N Change	Timeline
Urea hydrolysis to ammonium	2-3 days
Urea with urease	7-14 days
Nitrification of ammonium to nitrate	7-21 days
Nitrification with nitrification inhibitor	30-50 days
Urease inhibitor + nitrification inhibitor	30-50 days
Controlled release	50-80 days

Products vary in function & can be impacted by soil conditions

EEFs in the Research

EEF Research

Grados, et al. (2022). Synthesizing the evidence of nitrous oxide mitigation practices in agroecosystems. *Environmental Research Letters*. <u>https://doi.org/10.1088/1748-9326/AC9B50</u>

EEF 4R Research

	4R Research	2016 Meta-Analysis
Nitrification Inhibitor	Reduced N ₂ O 24%	Reduced N ₂ O 38%
Double N Inhibitor (Urease and Nitrification)	Reduced N ₂ O 30%	Reduced N ₂ O 30%
Slow Release/Polymer Coating	Reduced NH ₃ 81% and N ₂ O 55%	Reduced N ₂ O 19%

Varies by soil & environment

Thapa, R., Chatterjee, A., Awale, R., McGranahan, D. A., & Daigh, A. (2016). Effect of Enhanced Efficiency Fertilizers on Nitrous Oxide Emissions and Crop Yields: A Meta-analysis. Soil Science Society of America Journal, 80(5), 1121–1134. https://doi.org/10.2136/sssaj2016.06.0179

EEF 4R Research

	4R Research	2016 Meta-Analysis	
Nitrification Inhibitor	Reduced N ₂ O 24%	Reduced N ₂ O 38%	
Double N Inhibitor (Urease and Nitrification)	Reduced N ₂ O 30%	Reduced N ₂ O 30%	
Slow Release/Polymer Coating	Reduced NH ₃ 81% and N ₂ O 55%	Reduced N ₂ O 19%	
Varies by soil & environment			

Thapa, R., Chatterjee, A., Awale, R., McGranahan, D. A., & Daigh, A. (2016). Effect of Enhanced Efficiency Fertilizers on Nitrous Oxide Emissions and Crop Yields: A Meta-analysis. Soil Science Society of America Journal, 80(5), 1121–1134. https://doi.org/10.2136/sssaj2016.06.0179

EEF 4R Research

Minnesota

According to a Farmer survey (accounting for 5.4M acres) and field data:

Split N with EEF = \$129M return

Adding split N applications using polymer coated urea to acres indicated by farmers in the study could lead to \$129M annual economic returns across the state overall. \$63/acre on average

EEFs reduced N emissions by 81% NH3 and 55% N20

Using a polymer coated urea (instead of urea) reduced losses for both ammonia (NH3) and nitrous oxide (N2O) by 81% and 55% respectively

Translates to **1.83US tons** (1.66 metric tons) in **NH3-N** and **2.81US tons** (3.09 metric tons) in **N2O-N emissions** for the 5.4M acres

EEF Research

- 2022 meta-analysis found that the overall range of N2O mitigation potential for the technology-driven solutions like EEFs was 22%-49% (Grados et al., 2022).
- Another 2022 meta-analysis found that urease inhibitors reduced NH3 volatilization by 51% and nitrification inhibitors reduced N20 emissions by 49%. The authors also stated using a combination of nitrification and urease inhibitors "...enables producers to balance crop production and environmental conservation goals without pollution tradeoffs." (Fan et al., 2022).
- In a 2016 meta-analysis, nitrification inhibitors (DCD and nitrapyrin) were found to *reduce emissions on average by over 40%, and polymer coated urea by 20%* (Thapa et al., 2016).
- 2023 meta-analysis found EEFs were as effective in reducing annual mean emissions as those during just the growing season (Pelster et al., 2023).

EEF Research

 2022 meta-analysis found that the overall range of N20 mitigation potential for the technology-driven solutions like EEFs was 22%-49% (Grados et al., 2022).

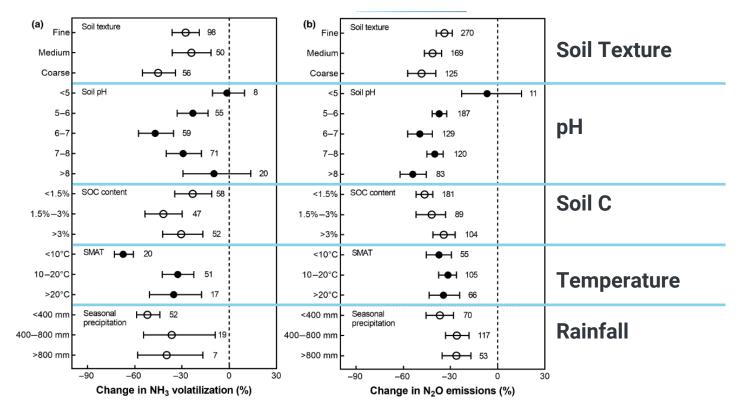
• 2023 meta-analysis found EEFs were as effective in reducing annual mean emissions as those during just the growing season (Pelster et al., 2023).

EEFs & the 4Rs

Why to use EEFs

"I'll use the cheapest one"

• What is your objective? Will you achieve anything this way?


"I tried that and it didn't work"

• What were the soil and weather conditions? Did you choose the right product for the problem?

"It doesn't matter as long as I can say I'm using an EEF"

• Missing the point of the 4Rs and maximizing the technology

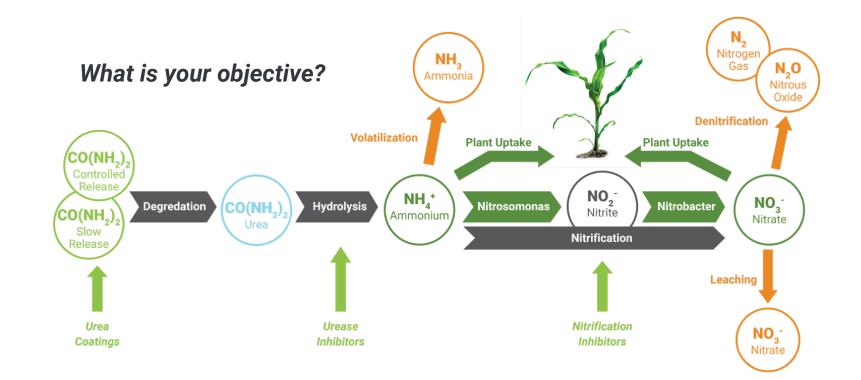
EEFs (inhibitors) and Soil Factors

Fan, D., He, W., Smith, W. N., Drury, C. F., Jiang, R., Grant, B. B., Shi, Y., Song, D., Chen, Y., Wang, X., He, P., & Zou, G. (2022). Global evaluation of inhibitor impacts on ammonia and nitrous oxide emissions from agricultural soils: A meta-analysis. *Global Change Biology*, 28(17), 5121–5141. https://doi.org/10.1111/gcb.16294

Why to use EEFs

"I'll use the cheapest one"

• What is your objective? Will you achieve anything this way?

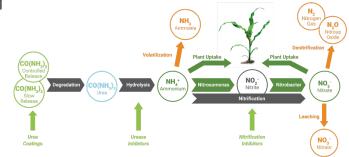

"I tried that and it didn't work"

• What were the soil and weather conditions? Did you choose the right product for the problem?

"It doesn't matter as long as I can say I'm using an EEF"

• Missing the point of the 4Rs and maximizing the technology

Understanding EEFs & N Cycle


4R Questions to Consider

Where do I think my N program is weakest or leakiest?

What is my NUE (PFP)? Can I improve that? Where can you target in the N cycle?

What sources am I using and is there a need to add an EEF?

Can I add in a split application to help with timing? If that's not possible, can I use a "long-term" EEF?

Summary

- EEFs can impact all 4Rs, preventing loss and improving NUE
 - Controlled release Time, Place, Rate
 - Urease Inhibitors Source, Time, and Place
 - Nitrification inhibitors Time and Place
- Climate-smart programs will likely increase the value of EEFs
 - EEFs can improve economic, social, and environmental benefits that are key to the 4Rs
 - Carbon programs: N and C are linked in the soil
- Use the right tool for the problem: pick the right mode of action EEF

Thank you & Questions

Leanna Nigon | <u>Inigon@tfi.org</u>